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We generalize the notion of a topological transitive or a topologically mixing 
system for quantum mechanical systems in a consistent way. We compare these 
ergodic properties with the classical results. We deal with some aspects of nearly 
Abelian systems and investigate some relations between these notions. 
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1. I N T R O D U C T I O N  

Boltzmann's visions on statistical mechanics have developed into two 
mathematical disciplines, topological dynamics and measure-theoretic 
ergodic theory. They contain related but not identical information. In 
Boltzmann's times these notions were not sharpened to the extreme that 
one could say which one he had in mind. In any case, neither of the two 
theories contains nature, which is quantum mechanical. 

In this paper we show that the algebraic formulation of quantum 
mechanics contains notions for ergodicity which reduce to the classical 
ones for an Abelian algebra and therefore generalize these theories to more 
realistic cases. It also clearly separates the two theories. The generalized 
topological dynamics is concerned with the long-time behavior of one- 
parameter group of isomorphisms of a C*-algebra whereas quantum 
mechanical ergodic theory studies the properties of extremal invariant 
states, that is, invariant states which cannot be decomposed into other 
invariant states. 

We will see that by going to the non-Abelian generalization the 
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ergodic properties become partly better and partly worse. What gets lost is 
that the extremal invariant states automatically have the desired ergodic 
properties. However, for these one does not need Abelianness, but only 
asymptotic Abelianness, which requires that observables at vastly different 
times commute. This never holds for finite quantum systems, but once they 
are discarded, one is much closer to the classical ideas. 

An ergodic (or mixing) state tells us that on its support the system 
approaches equilibrium in the time mean (or time limit). Thus, if there is a 
faithful ergodic state, the system approaches equilibrium as a whole. In 
fact, we will be able to draw this conclusion already if the representation 
furnished by this state is faithful. 

Now comes a special quantum bonus, namely, if the algebra is simple, 
the latter condition is satisfied by necessity since simple algebras have only 
faithful nontrivial representations. Simple algebras are the opposite extreme 
to classical systems; their classical part, namely their center, is trivial. 

The situation becomes even better if also the algebra which contains 
all weak limit elements has no center. Then the time limits exist and the 
system does not only show ergodic, but even mixing properties. This last 
condition is satisfied for extremal KMS states, which, ignoring some 
obnoxious examples, practically always exist. 

Thus, we see that in the non-Abelian setting there is a large class of 
systems, namely the simple asymptotic Abelian algebras, which exhibit the 
features which Boltzmann envisaged. 

2. GENERAL DEF IN IT IONS 

In the sequel algebras are assumed to be with an identity, normal shall 
mean continuity with monotone limits, and all means are understood to be 
invariant means. 

D e f i n i t i o n  1. A C*-dynamieal system (d ,  ~) is a pair consisting of 
a C*-algebra d and an automorphism = (4: id) of d .  The set of (~-) 
invariant elements of d is denoted by d := {a e d :  ~(a) = a}. 

Remarks 

1. To be precise, we ju.st defined something one should call a discrete 
C*-dynamical system, because the set of the automorphisms we look at 
form a group which is isomorphic to 7/. Of course, one can use other 
groups, such as ~, or even more exotic (topological) groups (ref. 1, p. 136). 

2. In the case the C*-algebra is even a W*-algebra such a system is 
called a W*-dynamical system. We denote it by (J / ,  ~) to distinguish it 
from a common C*-dynamical system ( d ,  ~). 
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If (sJ, ~) has an invariant state co, the automorphism ct is unitarily 
represented via the GNS construction rc~. The e can then be extended to 
7~o(d)", which thus is then a W*-dynamical system containing ( d ,  ~). If 
there are several invariant states, this W*-dynamical system clearly is not 
uniquely determinated by the original C*-dynamical system ( d ,  ct). 

Note that, on the other hand, it is always impossible to reconstruct a 
unique d out of some given JC{. 

3. If d is Abelian, it is isomorphic to C(M), the continuous functions 
over some compact space M (ref. 6, p. 4). In this case c~ corresponds to a 
homeomorphism e ,  of M: or(f )(m)=f(c~,(m)). 

For Abelian W*-algebras there is an isomorphism between J// and 
L~176 the essentially bounded #-measurable functions on some 
localizable measure space M (ref. 6, p. 45). 

[In the Abelian case the last remark corresponds to the fact that 
though there is no unique Borel measure, there is always a unique (Borel-) 
measurable structure for some given toplogical space, but that in general it 
is impossible to reverse such a construction.] 

4. The other extreme is d being a simple algebra, i.e., there are no 
nontrivial (closed) two-sided ideals. This is realized, e.g., by algebras of 
creation and annihilation operators in quantum field theory. Simple 
algebras have trivial center; a nontrivial center contains a nontrivial 
element which generates a (nontrivial) two-sided ideal. The converse 
is not true, ~ ( ~ ) ,  dim o ~ = o e ,  has trivial center, but contains the 
nondenumerable family of ideals cgp, 1 ~< p ~< oe [p-norm-closure of the 
finite-rank operators, C~ being closed in the C*-topology of N ( ~ ) ]  
(ref. 5, p. 41 ). 

5. The typical algebras we have in mind are UHF-algebras (or Glimm 
algebras), which are the norm closure of an ascending sequence of finite- 
dimensional full matrix algebras with the same identity J/gd, d--* o0. In 
physics they correspond to systems with infrared and ultraviolet cutoffs, 
which are then removed. For the needs of physicists they should provide a 
sufficient general framework. They have the virtue that they are simple, 
separable, and have a unique tracial state (ref. 4, p. 205). 

Definition 2. A state co over a C*-dynamical system ( d ,  ~) is 
called invariant iff co oct=co. The extremal points of the weak*-closed 
convex set 5P~ of ~t-invariant states are called extremal invariant. 

Remarks 
1. In the Abelian (W*-) case a state 09 corresponds to a Borel 

measure # on M, and S= are the invariant measures of classical ergodic 
theory. 
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2. 5P~ is nonempty, since an invariant mean over 7? of ~o o e"(. ), n s 7?, 
is a positive linear functional which cannot vanish as co(an(D))= 1. 

For instance, the unique tracial state r over a UHF-algebra is always 
invariant, since ~ o ~ is also tracial, 

r o o~(ab) = z(o~(~) ct(b)) = z o ~(ba) 

3. Any co s ~ leads to a GNS-representation ~o~ of d in # 3 ( ~ ) ,  the 
bounded operators over some Hilbert space ~ o  with cyclic vector 
I~)  s ~o.  Then c~ is implemented by some unitary element U s  # ) ( ~ ) :  

rco~(e(a)) = U -  lg~o(a) U 

U can be made unique by the condition U I f 2 ) =  IQ) (ref. 1, p. 42) 
The invariant states may lead to unusual representations. For  

instance, a time mean of the Weyl operators with the free time evolution 

•i(rp + sq) b--+ f i[rp + s(q + pt)] 

in any state of the standard representation leads to a state 

a)(ei(rp+sq))={ Of(r) forf~ sS#0= 0 

Thus, the representation is not strongly continuous and acts on a non- 
separable Hilbert space: With Ir, s ) = e  i(rp+sq) [(2) we have 

(r ' ,  s' Ir, s )  =o~(e i(r'p+s'q)ei(rp+sq))= {0 for s # s '  
e i~(~- r')/2f(r -- r') for s = s' 

4. In a representation n~ and with ~n a mean over 7? one can define a 
mean q of operators by taking the mean of matrix elements 

c~(btl(a) c) = qn(o~(b~"( a) c) ) 

Therefore ~/ is a conditional expectation from M" onto J := 
{ a s d " :  c~(a) = a } ,  if we abbreviate ~ , ( d ) "  by M", etc. 

If o~ is faithful and invariant, q even coincides with the canonical 
conditional expectation, which has the property 

since 3 ~ is invariant under the modular automorphisms of o~, as the latter 
commutes with ~. This is the criterion for existence and uniqueness of the 
canonical conditional expectation. (7) In this rather typical situation t 1 
therefore becomes independent of the particular mean chosen for ~/n- 
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According to von Neumann's ergodic theorem, Po :=  q,(Un) is the 
projector into the eigenspace of eigenvalue one of U and therefore is also 
independent of t/n. Then obviously r/(a)Po = Poq(a)= PoaPo Vae go)(d). 

For long times the system may behave classically in a way discussed in 
the following result. 

Proposition 1. Among, the properties 

(i) co(c*[r/(a), b]c)=OVa, b, ceWg~l mean over Z 

(ii) co([t/(a), b ] ) = 0 V a ,  b ~ d V q  mean over 

(iii) Pos~Po is Abelian 

(iv) t / (d )  ~ ~o := d "  c~ d '  Vt/mean over 2 

(v) W a  u'cY~o 
(vi) d '  c~U' cs 

(vii) d ' c ~  U' is Abelian 

which are supposed to hold for all coeS~, we have the following 
implications: 

(iv) ~ (i) =~ (ii) ~ (iii) 

(v) (vi) =~ (vii) 

Remarks 

1. Property ( i ) i s  guaranteed if l i m , ~  N[c~"(a),b]lt =0Va,  b e d .  
However, this condition may fail even if (i) holds. For instance, for Fermi 
fields and translations the anticommutator rather than the commutator 
vanishes asymptotically. However, since t/map~ the odd elements into zero, 
(i) holds nevertheless. 

2. Property (i) will not necessarily hold for all a E d "  even if it is 
satisfied for all a e d .  For instance, in an irreducible representation the 
unitary operators which generate a non-Abelian group commuting with c~ 
will be in d "  but form a noncommutative subalgebra invariant under c~. In 
general also d "  c~ U' ~ ~o, since the generator of ~ may be in d" .  

3. Property (ii) (G-Abelianness) is satisfied for finite systems iff U is 
nondegenerate. In this case the sharper version (i) OI-Abelianness) fails and 
so (i) seems more appropriate to characterize infinite systems with 
thermodynamic behavior. 

4. Note that ~ e  is the center of d " .  It may be nontrivial even if ~ '  is 
simple and therefore must have a trivial center. 
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5. For further notions of "asymptotic Abelianness," examples, and 
implications see ref. 2. 

Proof. (i) =~ (iv): By polarization, (i) requires any matrix element of 
[r/(a), b]  to vanish. 

(iv) =~ (i): This is obvious. 
(iv) =~ (v): r/leaves the invariant elements unchanged. 
(i) =~ (ii): Take c = 1. 
(ii) r162 (iii): r/(co([~"(a), b]))  = og([PoaPo, PobPo]); thus (iii) =~ (ii). 

But since (ii) is asserted to hold for any expectation value in the range of 
Po, we also have (ii)=~ (iii). 

( i i ) ~  (vii): Consider the C*-algebra ~ generated by z ~ ( d )  and U 
and the algebra ~ '  := d ' c ~  U' (ref. 8, p. 134). Since P0 e ~" ,  we see that 
Po~'Po is homomorphic to .~'; in fact, even isomorphic, since Po has in its 
range the cyclic vector of 7Lo(d ), which is separating for d ' .  In fact 
PoTzo~(zr " Po = Po~"Po is maximal Abelian (in P o ~ ) ,  since if it were not, 
[ f 2 ) = P o [ f 2  ) could not be cyclic. Thus, Po~"Po=Po~ 'Po  and the 
Abelianness of Po~"Po implies the same for d '  n U'. 

(i) => (vi): Because of (vii) we know 

~'Po = Po~'Po ~ Po~"Po = Pod"Po = Po~l(no,(d)") Po 

c Po~o~ n U'Po c ~ o P  o 

Thus Y a ' ~ d ' n U ' ,  3ze~o,c~U' such that a' [ t 2 ) = z [ f 2 ) .  Since f2 is 
separating for d ' ,  we conclude that d '  n U' = L~. 

( v i ) ~  (vii): This is obvious. | 

Def in i t ion 3. A C*-dynamical system ( d ,  ct) is called q-Abelian iff 
(i) is satisfied, i.e., 

[-r/(a), b] = 0, Va, b e rco~(d) 

in all extremal invariant states o9. If l i m , ~ [ ~ " ( a ) ,  b]  exists as a weak 
(resp. strong) limit for all a, b e rc,o(d) and 

lim [~"(a), b] = 0 

holds, the system is called weak (resp. strong) asymptotic Abelian. 

Remark. The definition says: strong asymptotic Abelian=~weak 
asymptotic Abelian =~ r/-Abelian =~ (i)-(vii) of the preceding proposition. 



Transitivity and Ergodicity of Quantum Systems 1103 

3. ERGODIC PROPERTIES 

Next we give a precise meaning to the intuitive notion that the algebra 
sr is being mixed by e. There are various candidates for a good definition. 

Proposition 2. 
might possess, 

(i) 
(ii) 

(iii) 

(iv) 

(v) 

(vi) 

Among the properties a C*-dynamical system 

J=c~,cEC 
VO<a, b~ ~ ,  3n: aot~(b) a > O 

there is no ~- and ,-invariant closed (linear) proper subspace 
(other than CQ and O) of the Banach space d 

the linear span of an(a) and ~(a*) ,  n ~ g ,  is dense in d for all 
a ~ d  (a~cO) 

there is no ~- and ,-invariant proper nontrivial closed sub- 
algebra of d 

the algebra generated by a"(a) and an(a *) is dense in ~r for all 
a ~ d  (a~cD) 

we have the following implications: 

(i)  ~ ( i i )  

(v) ~ (iii) 

(vi) ~ (iv) 

ProoL ( i i )~ ( i ) :  Suppose ~O<b~J ,  b C d .  So b has at least two 
different spectral values cl.2. With 0 denoting the step function and 
c = �89 + c2), we construct b+ = [ + (b - cO)] O[ __+ (b - d ) ]  > O, which are 
in J+  > 0  and b + b  =0.  

(iii) ~ (ii): ~ = {b: ac~n(b) a = O, Vn ~ Z } is a linear invariant subspace. 
Thus, if (ii) fails for some a and b, then there exists a nontrivial 4 .  

(iii) ~ (iv): If for some a ~ d the linear span of ~n(a) and ~n(a*) is not 
dense in ~r then (iii) fails. 

(iv) ~ (iii): If M is the subspace for which (iii) fails, for any b ~ ~ ,  the 
span of ~n(b)c ~' and thus (iv) fails, too. 

(v) ~ (i): If J r  there is a proper invariant subalgebra (.,r = ~r is 
impossible, since ~ ~ id). 

(v i )~ (v ) :  The algebra generated by c~"(a) and ~"(a*) is obviously 
~- and .-invariant. 
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(v)=~(vi): The algebra generated by ~"(a) and ~"(a*) for a any 
element of a proper invariant subspace cannot be dense in d .  

(iii) ~ (v) and (iv)=~ (vi): These are obvious. | 

Remarks 

1. Property (i) is too weak and does not imply (ii). Consider the one- 
dimensional shift on the algebra of ~o(N=) w ~. Property (ii) obviously fails, 
but the invariant functions are proportional to a. 

2. Property (iv) requires too much. For instance, free fields in one 
dimension with e the shift satisfy (ii), but the linear space generated by the 
creation and annihilation operators is far from being all of ~ .  

3. Property (i) is already strong enough to exclude finite quantum 
systems, in fact all inner automorphisms. If e ( a ) =  U - l a U r  a, then UE J ,  
U#eB. 

D e f i n i t i o n  4. A C*-dynamical system ( ~ ,  ~) is called transitive 
(resp. transitive mixing) iff 

V0<a ,  b e d  3neZ :  a~"(b) a > 0  

[resp. 

V O < a , b ~ d  3NEZ:a~"(b) a>OVn> N] 

The Abel ian Case 

To connect classical dynamical systems and their topological theory 
with these notions, we have the following results. 

Proposit ion 3. For a seperable Abelian C*-dynamical system, 
being transitive is equivalent to each of the following conditions: 

(i) 3mo e M :  U , ~  ~,(mo) is dense in M 

(ii) V N c M w i t h e . ( N ) = N a n d N c l o s e d ~ N = M o r N i s n o w h e r e  
dense in M 

(iii) V N ~ M  with e . ( N ) = N  and N o p e n = ~ N = ~  or N is dense in 
M 

(iv) VN1, N2 c M open and nonempty 3n ~ Z with ~ . (N])  c~ N 2 ~ 

(v) V0<f, geC(M) 3neZ with g ~ " ( f ) > 0  

Proof. (i)=~ (ii): Suppose there is an open, nonempty O c N. Then 
there exists an i with e , ( m o ) e  O c N and, as N is invariant under :t. it 



Transitivity and Ergodicity of Quantum Systems 1105 

follows that also Un~ z c%(m0)c N. Therefore, either N has no interior or 
N=M. 

(ii) .*~ (iii): This is obvious. 
(iii) ~ (iv): 0 ~  ~ c%(N1)is an open :%-invariant subset, so it must be 

dense in M by (iii). Therefore it has a nonempty intersection with any open 
subset N 2. Thus, (iv) must hold for at least one n e 7/. 

( i v ) ~ ( i ) :  As the C*-algebra is separable, there exists a countable 
(topological) base {Ui} of M (ref. 9, p. 17). Then the set of all points in M 
with nondense orbit is [.)i~ z0n~ z c%(M~Ui), since for every such point 
there must be a U~ which its orbit does not reach. The complementary set, 
which consists of all points with dense orbit, is ( ~  z U,~ z e , ( U ~ ) r  
because of (iv), it is the countable intersection of dense open sets (Baire 
category theory). 

(iv) ~ (v): There are nonempty open sets NIand  Ng for whichfresp ,  g 
are strict positive for all points in Nf resp. Ng. As 3 n e e  with 
~."(Nf) ~Ng:; k ~j, clearly all values of ~zn(f)g in this set are strict 
positive. 

( v ) ~  (iv): For all nonempty open sets N1 and N2 there are some 
functions f~, f2 ~ C(M) which are strict positive on them and vanish out- 
side. As c~'(f~)f2 > 0 for some n, there must exist a nonempty open subset 
N c M  with ~"(fl)  f2 strict positive on N. As Nca-~(N1) and NON2, it 
follows that ~ C N c  c~(N1) ~ N2. 

The equivalence of transitivity and (v) is obvious. | 

Remarks 

1. Conditions like (iv) and (v) hold for (topologically) mixing 
Abelian systems, too. 

2. For  transitivity it is not necessary for every orbit to be dense; 
isolated fixed points can be ignored. 

3. A simple example of a Hamiltonian system restricted to an energy 
shell where the absence of (continuous) nonconstant invariant functions is 
not sufficient for transitivity is given by the double-well potential: 

V(x)=Eo-clx2 +c2x 4, ci>>.O 

For H = Eo we have three orbits, one x = 0, one with x > 0, and one x < 0. 
None is dense, so the system cannot be transitive. However, a time- 
invariant (continuous) function must have constant values 71 for x > 0 and 
72 for x < 0 .  Continuity of the invariant function requires 71=72. 
Nevertheless, this system restricted to x~>0 would be transitive, though 
there would be still a fixed point at x = 0. 
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Def in i t ion  5. An invariant state co is called ergodic (resp. mixing) 
iff 

n(co(a~~ ) c) ) = co(ac) co(b) 

for all a, b, c e d [resp. 

lira co( ae"( b ) c) = co( ac ) co(b) 
r t  ~ o o  

for all a, b, c ~ d ] .  

Remarks 

1. The ergodic states are a subset of the extremal invariant states. 
Convex combination of ergodic states cannot be ergodic. 

2. In the Abelian (or r/-Abelian) situation the definition of ergodicity 
reduces to the usual 

q(co(a~"(b))) = co(a) co(b) 

(similarly for mixing). 
In the noncommuting case we need three factors for a definition that 

excludes finite quantum systems. For them the extremal invariant states are 
expectation values with eigenvectors of the Hamiltonian. 

If ~ (a )=  eiHae -ill, H [k) = ek Ik), and co(a)= (k] a [k), then 

q.(co(aen(b))) = t / . ( ~  ( k la l j ) ( j l b [k )e in (eJ -ek ) )  = ( k l a [ k ) ( k l b l k )  

iff (ek) is nondegenerate. However, there are always a, b, r such that 
q(co(ac~(b ) c) ) ~ co(ac) co(b). 

3. More generally, the more stringent condition in the preceding 
definition can never be met if ~ is an inner automorphisms e ( a ) =  uau -1. 
Taking b as this u, we see that it would have to be a multiple of 0. 

4. Note that if all invariant states co e 5e are mixing, this implies 
asymptotic Abelianness, since co( ac~"(b ) cd) ---* co( acd) co(b) *-- co( ac~"( b ) d). 

The Abel ian Case 

In this case our definition reduces to the classical one and we have the 
following results. 
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Proposition 4. For an Abelian W*-dynamical system, its measure 
It being ergodic is equivalent to each of the following conditions: 

(i) Vf It-measurable 

n 1 

q(f(mo)) := lim -1 ~ f (a , (mo) )  = fm f (m) i t ( dm)  = ' i t ( f )  
n ~ o o  n i = 0  

for It-almost all mo ~ M 

(ii) VNc  M with/~(N) > 0 ~ It(U.~ ~ ~.(N)) = 1 

(iii) V N = M  It-measurable and with ~ . ( N ) = N ~ I t ( N ) = I  or 
It(N) = 0 

(iv) VNI, N 2 c M  with I t(N1)>0<it(N2) 3n~Y_: ,u(~,(N1)~N2)>O 

(v) Vf g It-measurable ~l(it(fan(g))) = It( f)  It(g) 

Proof. As the proofs of (i) and (v) are rather complicated and 
technical--for example (i) relies heavily on some classical ergodic theorems 
(such as the Birkhoff ergodic theorem, etc.)--and those for (ii)-(iv) are 
quite trivial (as with transitivity), we omit them and refer to ref. 9 [p. 34 
for (i), p. 27 for (ii)-(iv), and p. 45 for (v)] or ref. 11. [ 

Remarks 

1. Again similar conditions hold for mixing Abelian W*-dynamical 
systems. 

2. Condition (i) is one of the main results of classical ergodic theory. 
It states that for classical ergodic systems the time mean and the phase 
mean of some observable are equal almost everywhere. 

3. Condition (ii) somehow corresponds to the first criterion of 
transitivity: The orbit of some (measurable) subset of the space will travel 
around almost everywhere. However, of the two notions ergodicity and 
transitivity, generally neither property implies the other. 

4. For a transitive W*-dynamical system any normal invariant state 
co is ergodic. The reason is simply that q(a) belongs to the algebra, is 
invariant, and, according to (10), a multiple of unity. Therefore, in this case 
co01(a)b)=co(a)~o(b ) and the time-invariant state is unique (unique 
erg odieity ( j 1)). 

Of course, transitivity of ( d ,  c~) does not imply it for (~,o(~4)", ~). In 
particular, in the Abelian situation the mean of continuous functions, the 
existence of which is asserted by the Birkhoff ergodic theorem (almost 
everywhere), will not be a continuous function any more. 
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4. RELATIONS 

Proposition 5. If all extremal invariant states of a C*-dynamical 
system ( d ,  e) are ergodic (resp. mixing), then ( d ,  c~) is t/-Abelian (resp. 
weak asymptotic Abelian). 

Conversely, if ( d ,  ~) is r/-Abelian, all extremal invariant states are 
ergodic. 

Proof. By definition, 

q(o9(c*e'(a) bc) ) = og(c*bc) o9(a) = rl(o9(c*b~'(a) c) ) 

(resp. the same for l i m , ~ ) .  Thus ergodicity (resp. mixing) implies 
q-Abelianness (resp. weak asymptotic Abelianness). 

Conversely, if o9 is extremal invariant, the invariant elements in the 
commutant must be proportional to D; otherwise one could decompose o9 
further, q-Abelianness implies that q(a) is in d ' c ~  U' and is thus propor- 
tional to ~. Therefore, q ( a ) =  og(a) D and 

~l(co(ac~"(b) c)) = og(~r/(b) c) = og(ac) co(b). | 

r/-Abelianness implies many ergodic properties for extremal invariant 
states (cf. [-8, p. 149] or [-3, 2]). 

Proposition 6. If ( d ,  ~) is an r/-Abelian C*-dynamical system, the 
following conditions are equivalent: 

(i) o9 is extremal invariant 

(ii) e9 is ergodic 

(iii) q(a) = cO, Va ~ d 

(iv) r t~(d) '  c~ U' = cfl 

(v) d i m P o = l  

(vi) o9 is the only normal invariant state on ~z~(d)" 

Furthermore, the following sharpened versions are equivalent: 

(i) 09 is mixing 

(ii) w- l i r a , _ ,  _+oo U ~= If2)(f21 

(iii) w- l imn_.  +_o~ ~ ' ( a ) =  o9(a) 0. 

Remark.  In these cases ~/ (resp. lim, ~ 0o) maps d into d " ,  but still 
these limits can be only weak limits, in general 

co(ab) = lim ~'(ab)~a lim ~'(a) lim ~n(b)=o9(a)o9(b) 
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Suff ic ient  Condit ions  for Transitivity 

All the following conditions imply that ( d ,  ~) is transitive: 

(i) There exists a faithful ergodic state 

(ii) (~ ' ,  ~) is strong asymptotic Abelian and d is simple 

(iii) (~4, ~) is r/-Abelian and ~4 is a UHF-a lgebra  

(iv) There is an extremal invariant state which remains faithful when 
extended to d "  

Proof. (i) Ergodicity states that q(co(a~"(b)a))= og(a z) ~o(b). So for 
~o faithful and any 0 < a, b e d the right-hand side is always > 0. 

On the other hand, if there is no n e 7/for which a~n(b) a > 0, then for 
a~"(b) a e ~r the mean must be zero, as in this case oJ(a~n(b)a)= 0 for all 
n e Z .  

(ii) First consider q(co(a*~"(b*) c*~"(d) c~"(b)a)) for d>O,  
a, b, c e d ,  and ~ extremal invariant. This is equal to 

q(c~(a*c*~"(b*) ~"(d) ~"(b) ca)) 

= ~(a*c*ca) ~(b*db) as [c, ~ ( b ) ]  ~ 0  

and, since ( d ,  ~) is afortiori r/-Abelian, ~o is ergodic. 
Now assume c*~"(d)c=0 Vn. Then ~o(b* db) or ~(a*c*ca) must be 

zero for all a, b. Thus, ~o(d) or ~,(c*c) has to be zero, which is impossible, 
since a simple algebra has only faithful representations. 

(iii) For  a UHF-algebra  there is a unique trace state ~ which is 
faithful and invariant for all automorphisms. Furthermore,  ~r~(d)"c~ 
~z~(d)'=cU, since any nontrivial element of the center would generate 
another trace state. Thus, it has to be extremal invariant because any 
decomposition in invariant states uses elements from ~r U' which are 
trivial because of (Prop. 1). Thus, it follows that 

~l(z(c*~"(d) c) = ~(c*c) z(d)) > 0 VO < c, d e  ~r 

and thus c*~'(d)c cannot be zero for all n. 
(iv) Extremal invariant ~ d '  c~ U' = cD. Faithful ~ 9conjugate iso- 

morphism zr ~-~ d " :  z#'" c~ U' = cD ~ r/(a) = ~o(a) 0 ~ bq(a) b = o~(a) b 2 
0-~  the system is transitive and ~o is ergodic. I 

Remarks 

1. Condition (i) is more or less a classical result. (9'H~ 

2. Whereas ergodicity may often imply transitivity, the converse is 
not that easy. For  classical systems in fact some criteria are known where 

822/52/3-4-38 
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such an implication would hold. (11) But, as was shown, for example, in 
ref. 10, even under quite reasonable assumptions one can construct coun- 
terexamples. Note, however, that for these systems ( d ,  ~) but not the 
extension to d "  is transitive. 

Sufficient Conditions for Transitive Mixing 

Any of the following implies that ( d ,  a) is transitive mixing: 

(i) ( d ,  e) is t/-Abelian and there exists a faithful mixing state 

(ii) ( d ,  ~) is weak asymptotic Abelian and d is a UHF-algebra 

(iii) ( d ,  ~) is weak asymptotic Abelian and there exists a faithful 
invariant state e)E ~ on d "  with ~o~ = cB 

Proof. (i) Replace q by lim, ~ ~ in the preceding proof. 
(ii) UHF-Algebras admit a trace state z which is faithful invariant and 

leads to a trivial center. The weak cluster points of a'(a) must belong to 
the center and therefore must be T(a) D. Thus, the time limits exist and 

lim z(bab)=~(b2)T(a)>O~b~(a)b>O Vn>N 
r t ~  

(iii) Same as (ii), as co has all the properties of the trace state we 
needed in the proof of (ii). | 

5. DISCUSSION 

We have seen that quantum mechanics offers two gifts to ergodic 
theory and so we want some intuitive feeling for them. 

The first is that simplicity and asymptotic Abelianness already imply 
transitivity. This is satisfied for the shift on a two-dimensional quantum 
lattice system and one might wonder why this is transitive whereas we 
noted that the shift on the compactly supported functions on 0r 2 is not. To 
get this conceptually straight, one has to remember that for the algebra 

iE~'2 

a norm dense set of elements is of the form @ i ~ 2 ( e i + p i a )  with NiECe, 
flie C 3, and 12 a finite subset of 2 2. On its complement such a product acts 
as a unit operator and thus its classical analog is not a function supported 
on a compact subset of ~2, but on a cylindrical subset of {0, 1 }z2. Trans- 
itivity means that the automorphism mixes the system such that any two 
observables a and a' will eventually overlap. For example, two observables 
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which do not overlap, i.e., aa'=O, are a=@i~lP~ + and a ' = @ t ~ r P ; ,  
with P-+ the projectors for spin up or down and I n  I ' #  ~ .  As we shift a, 
eventually the shifted I will not meet I' and en(a)a'r Intuitively 
speaking, the observables have infinite tails which have to meet once. 

The second gift is that for these systems the triviality of ~e = d "  c~ ~ '  
strengthens transitivity to mixing. This means that for observables not only 
the time mean, but even the time limit exists. If the time limit exists, then 
the average is of course the limit and transitivity becomes mixing. Now if 
the sequence cr does not converge, it has at least weak cluster points, 
which for an asymptotic Abelian system must be in ~e If ~ is trivial, all 
cluster points are multiples of unity. But they cannot be different, because 
any time-invariant state o) gives a time-invariant neighborhood which 
separates multiples of unity. Suppose 

w - lira c~'~(a) = d ,  w - lim c~'J(a) = c'a 
k ~ o o  j ~ c c  

This would mean that there exist some K, J such that fco(c~'~(a)- cl)] < e, 
Vk>K, and ]o(~nJ(a)-c'D)]<~, Vj>J. Since e)(~m(a))=co(a)Vm, this 
implies c = c'. Since there is no other accumulation point than cD and boun- 
ded sets in ~(o~)  are weak compact, the time limit exists. In this sense for 
pure quantum systems, i.e., with trivial classical part, asymptotic Abelian- 
ness already guarantees the best ergodic properties. 

A feature of infinite quantum systems which seems strange to the 
classical intuition is the existence of faithful ergodic states. Classically they 
are always supported by one energy shell and are never over all of phase 
space. Also, for finite quantum systems the extremal invariant states are 
expectation values with eigenvectors of the Hamiltonian and never faithful. 
However, infinite quantum systems should be considered as open, since the 
observable finite parts are in interaction with the outside. It is just that the 
system is not divided into an observed part and a reservoir, but this dissec- 
tion is arbitrary anyway. The state specifies the condition at infinity and 
represents the reservoir. In any case the openness is exhibited by the fact 
that the time evolution is not an inner automorphism, the Hamiltonian 
being not an element of the algebra, but representation dependent. This 
opens the possibility that the system is completely mixed by the time 
evolution and transitivity and faithful ergodic states become possible. 

Note Added: O. Bratelli has informed us after this work was 
completed that an equivalent definition of transitivity has been given in 
R. Longo and C. Peligrad, J. Funct. Anal. 58:157-174 (1984). 

A seemingly stronger notion was introduced in O. Bratteli, G.A. 
Elliott, and D.W. Robinson J. Math. Sos. Jpn. 37:115-139 (1985), which 
also contains our sufficient condition (iv) for transitivity, Section 4. 
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